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ABSTRACT: The vehicle control systems domain encounters an increasing number of parameters and calibration targets 

considering the emerging technologies such as connected vehicles and automated driving. Accordingly, the calibration 

processes for such systems have become more complex and thus error prone and tedious. Moreover, the derived control policies 

are not easily transferable between different vehicle configurations, hence, the calibration effort is increasing dramatically with 

each configuration change. Therefore, the reduction of such efforts needed to setup the control policy is inevitable to further 

reduce cost of drivetrain development. The proposed methodology therefore is an important means to make BEVs (Battery 

Electric Vehicles) more attractive for car buyers. 

The fast development of the Artificial Intelligence (AI) domain is opening the door to numerous opportunities and applications 

in the automotive industry. We utilize Reinforcement Learning (RL) techniques to design appropriate control strategies for 

different vehicle systems, thus improving the conventional approaches and reducing the development effort. Combining the 

expertise in simulation and big data, we propose a cloud-based solution that runs a high-fidelity simulation to train, test and 

deploy the thermal management control strategy for a fleet of BEVs. The benefits, among others, are that the RL-based control 

policies can be designed more rapidly and run more efficient than the traditional rule-based approaches. After deploying the 

initial model trained against the simulation, we have the capability of collecting data from a fleet of vehicles operating with the 

latest control strategy. Using collected data, we iteratively train and customize the strategy throughout the operation time. 

We have tested the above-mentioned framework on the use case of cabin heating mode selection for BEVs. Our RL agents 

are trained and evaluated in a model-in-the-loop simulation environment. The policy evaluation is based on the agents’ 

performance on representative vehicle test measurements (drive cycles). The metrics are selected to quantify the energy 

efficiency and comfort individually, as well as aggregated to enable a fair comparison. Notably the trained agents achieved 

better results than the original control policy on most of the individual metrics and significantly better results on the aggregated 

metric. 

At this moment, our framework is tested against simulated vehicle fleet. The first reasonable research question is if the trained 

control system can be directly transferred to the real vehicle, or whether additional adjustments must be performed to achieve 

the needed flexibility. Another open question refers to the adequate combination of RL algorithms to achieve even better 

performance on telemetry data from a connected fleet. Time will tell if the idealized case with continuing on-policy training, 

or the more complex case using the policy-agnostic offline algorithms, will provide the stronger solution. 

The main technical contribution of our work is the use case agnostic framework which iteratively improves a conventional 

rule-based control strategy. Following the automotive V-model, the design-, implementation-, and testing -phase is strictly 

separated from the in-use phase of a vehicle function. To leverage historic data from the in-use phase, our framework disrupts 

this classical model and embeds the DevOps and ML-Ops practices into the automotive engineering process. 

In this article we suggest a framework which automates the complex and time-consuming creation process of control strategies. 

The trained control policies provide better results and allow for a continuous improvement after they are finally deployed on a 

fleet of vehicles. 

KEY WORDS: reinforcement learning, adaptive control strategies, thermal management, artificial intelligence, battery electric 

vehicles 

 

1 Introduction 

1.1 Trends in industry 

The automotive domain in general is a key industrial sector for Eu- 

rope (1) by securing 13.3 million jobs, producing 20% of the vehicles 

worldwide (out of 99 million vehicles produced yearly worldwide), 

and generating a yearly trade balance over =C99 billion. At the same 

time, the automotive market is impacting different major societal 

challenges such as reduction of pollutant emissions (2) , reduction 

of traffic fatalities (3) , increased mobility for an ageing population, 

or reducing congestion. Parallel to that, the habits of the consumers 

are evolving, and new needs are emerging such as infotainment 

and connectivity, human-machine interaction, and customization, as 

well as mobility as a service. Nowadays, the automotive sector is 

confronted by four main trends: 

 

• Electrification (4), with the introduction of e-mobility (hy- 
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brid, pure electric vehicle) to optimize or even completely 

remove the internal combustion engine, finally reducing the 

resulting local pollutant emissions during vehicle operation. 

• ADAS and autonomous driving functions (5) , with the 

purpose of providing more comprehensive information to 

the driver for better context awareness, up to taking over 

specific driving maneuvers – finally reducing the demands 

on the driver and lowering number and impact of possible 

accidents 

• Connected vehicles (6; 7) enabling optimization of vehicle’s 

operation or the emergence of new services while relying on 

external information, e.g., from other vehicles or from the 

infrastructure 

• Diverse mobility (8) targeting the efficient movement of 

people and goods with respect to different factors such that 

time, energy consumption, ecological footprint. 

Reinforcement learning (RL) has emerged as a powerful tool 

in control engineering for optimizing the performance of battery 

electric vehicles (BEVs). As the automotive industry shifts towards 

electrification, there is a growing need for efficient and intelligent 

control strategies to enhance the range, charging behavior, and over- 

all operation of BEVs. RL, with its ability to learn from interactions 

with the environment, offers a promising approach to address these 

challenges. 

Battery electric vehicles rely on complex control systems to 

manage various components, such as the electric motor, battery 

pack, power electronics, and regenerative braking systems. 

Traditional control techniques often rely on fixed models or rule-

based strategies, which may not fully adapt to the dynamic and 

uncertain nature of real-world driving conditions. 

Reinforcement learning provides a solution to this limitation by 

enabling BEV control systems to learn and optimize their behavior 

through trial and error. By interacting with the environment, 

which includes factors such as traffic, road conditions, and energy 

consumption, RL algorithms can learn optimal control policies that 

maximize specific objectives, such as range, energy and thermal 

efficiency, or driver comfort. 

However, there are challenges associated with the application 

of RL to control engineering for BEVs. RL algorithms typically 

require extensive computational resources and substantial amounts 

of training data, which can be challenging to obtain in real-world 

driving scenarios. Additionally, safety considerations and the need 

to validate and certify RL-based control systems pose significant 

hurdles. 

2 Thermal management 

In today’s rapidly evolving automotive industry, one of the critical 

areas of focus is vehicle thermal management. As vehicles become 

more advanced and complex, with the integration of electric power- 

trains and sophisticated electronics, managing the thermal dynamics 

within a vehicle becomes increasingly challenging. The efficient 

orchestration of heat generation, dissipation, and distribution is 

crucial for optimal vehicle performance, passenger comfort and safe 

vehicle operation. 

The thermal management system in a vehicle encompasses vari- 

ous components and processes that control the temperature of critical 

systems such as the e-motor, battery, and passenger cabin. However, 

several challenges arise in ensuring effective thermal management in 

modern vehicles, necessitating innovative solutions to address them. 

Figure 1 shows the thermal system architecture of a battery 

electric vehicle. A heat pump system can transfer the heat from one 

location to the another by utilizing the refrigerant circuit. It can use 

the ambient air surrounding the vehicle as a heat source. In this 

mode, the heat pump extracts heat from the outside air and transfers 

it into the vehicle cabin for heating purposes. However, the 

efficiency of the heat pump may be affected in cold weather 

conditions when the outside air temperature is significantly lower. 

In that case the heat pump can recover waste heat generated by 

various vehicle powertrain elements. For example, heat can be 

extracted from the vehicle’s e-motor or the battery. This approach 

optimizes the utilization of the vehicle’s internal heat sources and 

enhances energy efficiency. 

 

 
 

 
Figure 1: Thermal system architecture 

 
 

Different modes in the vehicle thermal management system 

ensure the best performance, passenger comfort and safe vehicle 

operation by using the correct heat sources and sinks. These 

modes allow the system to adapt to various conditions and 

requirements, providing the right heat source under different 

scenarios. The challenge is to choose the optimal mode in terms of 

efficiency but also to guarantee the passenger comfort and safe 

operation for different boundary conditions. For this use case we 

have created the following modes: 

 
 

Mode 1 self-heating PWT and battery to operating temperature. 

Cabin is heated using air heat pump or electrical heater 

Mode 2 heating the cabin with PWT or ambient air heat pump. 

Mode 3 heating cabin from battery 

Mode 4 heating cabin and PWT from battery 

 
Mode 5 heating cabin using combined heat of PWT and battery 

 
Mode 6 heating battery and cabin from ambient air heat pump or 

electrical heater 

 
Mode 7 heating cabin and battery from PWT or electrical heater 

 
Mode 8 cooling cabin, PWT and battery 

 

To determine the thermal mode that achieves the desired 

performance objectives a simplified plant model of the vehicle was 

generated in MATLAB/Simulink. The vehicle model includes the 

most important subsystems that are related to the cooling perfor- 

mance, cabin comfort and energy consumption. The model was 

built and calibrated to match the system behaviour of the reference 

vehicle. 
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Figure 2: Vehicle model 

 
The objective of this project is to evaluate the benefits of using a 

RL agent compared to a conventional control strategy in the context 

of electric vehicle thermal management. The goal is to optimize 

the thermal mode selection to ensure cabin comfort, securing bat- 

tery safety limits and enhance energy efficiency. To compare both 

approaches, first a conventional control strategy for thermal man- 

agement was implemented in the vehicle model. This strategy relies 

ments through additional policy gradient techniques and a more 

realistic human thermal comfort model. 

Brusey et al. (11) presented an energy-efficient vehicle climate 

control strategy, formulated as a Markov Decision Process (MDP) 

and solved using the Sarsa(𝜆) algorithm, providing a significant 

improvement over traditional climate control methods. Compared 

to their best performing controller, this approach reduces energy 

consumption by 13% while increasing the time passengers spend 

in thermal comfort by 23%, signifying its promise for substantial 

comfort and energy improvements in electric vehicles. 

4 Methodology 

4.1 Mathematical formulation 

Reinforcement learning considers the world in which an agent acts 
every discrete time step. Agent’s environment is modeled by the set 

of states 𝑆, actions 𝐴, and a reward function 𝑟 : 𝑆 × 𝐴 × 𝑆 → R. 

World is modeled stochastically with Markov decision process. This 

means that the transition to the next state 𝑠′ conditionally depends 

only on the current state of the world 𝑠 and the last chosen action 𝑎. 

Formally, in step 𝑘 transition probability is 

𝑃(𝑠𝑘+1, 𝑟𝑘+1 |𝑎𝑘+1, 𝑠𝑘 ) = 𝑃(𝑠𝑘+1, 𝑟𝑘+1 |𝑎𝑘+1, 𝑠𝑘 , 𝑎𝑘 , . . . , 𝑠0)  (1) 

on predefined rules and fixed algorithms based on threshold values 

and predefined operating conditions. where 𝑠0 is a starting state, 𝑎𝑘 

mitted and 𝑟𝑘+1 . 

action to which the agent has com- 

3 Reinforcement learning in Automotive industry 

Reinforcement Learning has emerged as a key component in the 

optimization of thermal management systems in Battery Electric 

Vehicles. The inherent value of RL lies in the adaptive nature and 

capacity to optimize processes in real-time. RL works by training an 

agent to make decisions within a specific environment to maximize 

a defined reward function. In the context of thermal management 

systems in BEVs, the agent represents the thermal control system, 

and the environment includes everything else except the agent. The 

reward function is designed to prioritize battery life, performance, 

and energy efficiency. 

The integration of RL in thermal management systems of BEVs 

enables more adaptive, efficient, and intelligent control of battery 

temperature, thereby improving vehicle performance, enhancing 

battery lifespan, and maximizing energy efficiency. However, chal- 

lenges such as defining optimal reward functions and managing the 

A sequence of all consequential states, actions, and rewards 
defines the episode. Our goal is to find the decision-making pol- 

icy 𝜋 : 𝑆 → 𝐴 which will maximize the expectation of the total 

discounted sum of rewards collected through 

∞ 

R = 𝛾𝑘 𝑟 (𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘−1) (2) 

𝑘=0 

In the formula 2 𝛾 ∈ [0, 1] is called a forgetting factor. It models 

how much the near future will be prioritized over the uncertain more 
distant future in the agent’s decision-making. 

The agent is not necessarily aware of the complete world’s state 

𝑠. The part of the world observable to the agent is called an obser- 

vation space. The world of our agent is modeled by the dynamics of 

the car during its ride. In our case actions are discrete cabin heating 

modes, and states are all possible readouts from the current step of 

the simulation: 

complex state-action space in real-world driving scenarios persist.  
Cabin Air , TCabin Target , TBat , TAmb,  

As RL continues to evolve and as computational capabilities and data 

availability increase, it will unquestionably continue to influence the 

future of thermal management systems in BEVs. 

3.1 Literature 

𝑠𝑘 = 

 

TPWT, TCH, TChlr, TCo, 
TCoB, THC, TRad, TWCDS 

vVeh PwrBat EffBat EffPWT 

. . . 

 

 
(3) 

Huang et al. (9) employed double deep Q network (double DQN) al- 

gorithm to optimize the battery thermal effects on energy efficiency. 

The proposed method, based on a gated recurrent unit (GRU) for 

state feature extraction, outperformed the existing fuzzy control, 

achieving over a 6.7% energy reduction during aggressive driving 

𝑎𝑘 ∈ {1, . . . , 8} 

The optimized function - agent’s policy - is modeled by the 

neural network. To reduce the input space of the neural network, 

observation space is chosen as a subset of state space as follows: 

across various tested cycles.  TCabin Air, TCabin Target, TBat, TAmb,   
  

Other scholars such as Chen (10) applied Policy Gradient Rein- 

forcement Learning (PGRL) approaches to vehicle climate control, 

Obs𝑘 = 
 

TPWT, TCH, TChlr,  TCo, 

TCoB, THC,  TRad, TWCDS  

(4) 

utilizing a multilayer perceptron-based neural network with a soft- 

max output layer, to maximize occupant comfort while maintaining 

reasonable energy consumption. Compared to other SARSA-based 

RL approaches, the implementation of the PGRL approach, particu- 

larly Proximal Policy Optimization (PPO), resulted in a significantly 

improved occupant comfort (from 67% to 92.3%) and a faster learn- 

ing time (reduced to 0.63 years), with potential for further enhance- 

The reward function was crafted to include multiple objectives. The 

first objective was minimizing the absolute difference between the 

target and the actual cabin temperature, TDev. The second was min- 

imizing the signed change in temperature ΔSoC. Last two terms 
PCH, power consumed by the chiller, and PComp, power consumed 

by the compressor. The rest of the reward function was imposing 

soft and hard constraints to 𝑇𝐵𝑎𝑡 , 𝑇𝑃𝑊𝑇 , and SoC as follows 
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PWT 

Constr(SoC) = 

(
0, SoC ∈ <0, 1>

 

 

 

Parameter Value 

Agent stepsize  60s 

SoC0 [40, 90]% 

Parameter 

 

Value 

[−7, 5]◦𝐶 

23◦𝐶 

Parameter Value Parameter Value 

 

 𝑇𝐷𝑒𝑣 
 

ΔSoC + 0.00856  PCH 
 

PComp 

Our framework enables us to automate of in-simulation training 

of thermal control strategies. Moreover, it allows periodic fine- 

𝑟 (𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘−1) = 
31  

+
 0.016 

+ 
9000 

+
 5500 

tuning of control strategies after initial strategies are deployed to the 
vehicle. This solution introduces MLOps and DevOps practises in 

−Constr(TBat) − Constr(TPWT) − Constr(SoC) 
(5) 

where constraints are defined with equations 

−10−TBat 

automotive engineering process enabling both the time saving dur- 

ing the initial creation process of control strategies. It also allows 

for a continuous improvement of the initial control strategies. 

 
5 Experiments 

 20 , TBat ∈ <−30, −10> 
0, T ∈ [−10, 50> Constr(TBat) = (6) In the in-simulation training with online algorithms approach, we 
TBat −50 

10 
TBat ∈ [50, 60> investigate several state-of-the-art algorithms such as DQN, PPO 

terminate, TBat ∉ <−30, 60> 

−10−TPWT 

and A3C. After careful hyperparameter tuning, the best performing 

agent was the PPO 0c6c9 with the hyperparameters in Table 1 and 

Table 2. 

 20 ,  TPWT ∈ <−30, −10> 
0, T ∈ [−10, 50> Constr(TPWT) = (7) 
TPWT −50 

20 
TPWT ∈ [50, 70> 

terminate, TPWT ∉ <−30, 70> 

terminate,  SoC ∉ <0, 1> 

 

 
(8) 

 

 
Table 1: Environmental parameters for in-simulation training with 

online algorithms 

Normalization and centralization constants in Equation 5 are com- 

puted from the empirical mean and standard deviation from multiple 
 

Parameter Value Parameter Value 
runs of the simulated environment. Constants in constraint defini-   

tions 6 and 7 are defined by the simulation team to keep the vehicle 

in the safe working conditions, while the constraint 8 is used to stop 

the episode when SoC is drained . 

4.2 Environment 

All experiments in this paper were executed in our framework which 

is built using Python language (12). Plant model provided by the 

simulation team was compiled to FMU and wrapped in Gymnasium 

(13) to provide a standardised Python interface for reinforcement 

learning training. Training was done using algorithms from RL- 

lib (14) library. There are two main parts of our training process 

(Figure 3) 

• Training in simulation 

• Training using real world data 
 

Figure 3: Training system architecture 

which should show our capability to create automated initial strategy 

and improve on it using real world data. Currently, while we haven’t 

deployed the algorithm to the vehicle, we are simulating real world 

data using new drive cycles and varying parameters. 

Table 2: Training parameters for in-simulation training with online 

algorithms 

 
On the other hand, the resultant PPO agent (0c6c9) was de- 

ployed to 985 different drive cycles with different initial ambient 

temperatures and SoC levels. A total of 3940 test cycles generated 

76305 training instances for learning from data which replicates real 

world trajectories. The PPO agent’s neural network was used to ini- 

tialize the offline learning agents utilizing the CRR and MARWIL 

algorithms and the training was completed with hyperparameters in 

Table 3 and Table 4. 

 

Table 3: Environmental parameters for learning from data which 

replicates real world trajectories 

 
 

 

fcnet hiddens [256, 256] VF coeff 1.0 

lr 0.0001 train batch size 10 

𝛾 0.999 num workers 5 

𝛽 1.0 envs per worker 3 

Table 4: Training parameters for learning from data which 

replicates real world trajectories 

Parameter Value 

Agent stepsize  60s 

SoC0 90% 

Parameter 

 

Value 

−7◦𝐶 

23◦𝐶 

, 

, 

fcnet hiddens [256, 256] Entropy Coeff 0.01 

lr 0.001 train batch size 5000 

𝛾 0.99 sgd minibatch size 500 

𝜆 0.95 num sgd iter 32 

KL coeff 0.03 vf share layers True 
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Decription Rule based PPO MARWILL 

6 Results 

 
The agents trained on a driving cycle called DC1-Return provided 

by the simulation team as shown in Figure 4. It has a total driving 

time of 860 seconds, a cumulative driving distance of 11.347 km, a 

max and minimum road slope of 7.65 and −6.86 respectively. 

 

 

 

 

 
Figure 4: Performance of agents trained on DC1-Return 

 

 

The best performing agent was the MARWIL 69081 where it 

outperformed the CRR agent. Accordingly, the focus of the com- 

parison will be to benchmark the rule-based strategy against the 

PPO-0c6c9 agent and the MARWIL-69081 agent. The testing was 

conducted on a 24 test cases incorporating six drive cycles with two 

initial SoC levels (90% and 60%) and two ambient temperatures 

(−7◦𝐶 and 10◦𝐶). The following three cases are in focus to discuss 

and highlight some key findings: 

 

6.1 Short cycle testing with cold start 

 

Figure 5: Results of rule based agent (the best in this test case!) 

on short cycle testing with cold start 

 

 
 

Figure 6: Results of PPO 0c6c9 on short cycle testing with cold 

start 

 

 
Figure 7: Results of MARWIL 69081 on short cycle testing with 

cold start 

Figure 5, Figure 6 and Figure 7 compare the performance of the 

three agents while the results are summarized in the table Table 5. 
 

 

ΔSoC/100km 30.66 32.87 31.46 

Rise time /◦𝐶 19.71 21.54 19.96 

 
Table 5: Test results for short cycle testing with cold start (drive 

cycle is DC-1-Return, SoC0 = 60%, Tempinit = −7◦𝐶) 

The rule-based strategy outperformed both PPO and MARWIL 

agents in the ΔSoC/100km and the Rise time /◦𝐶. MARWIL agent 
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was the second closest to the rule-based strategy and showed similar 

behavior in the mode selections as shown in figure X while the PPO 

agent followed a different approach that incorporated frequent mode 

changes. 

 
6.2 Long cycle testing with warm start 

 
 

 
Figure 8: Results of rule based agent on long cycle testing with 

warm start 

 

 

Figure 10: Results of MARWIL 69081 on long cycle testing with 

warm start 

 

 
 

 
ΔSoC/100km 17.76 16.05 16.11 

Rise time /◦𝐶 21.24 24.24 26.7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Results of PPO 0c6c9 (the best in this test case!) on long 

cycle testing with warm start 

Table 6: Test results for long cycle testing with warm start (drive 

cycle is DC-2-Return, SoC0 = 90%, Tempinit = 10◦𝐶) 

 

 

 

 

 

 

 

 

The results of the three agents are shown in Figure 8, Figure 9 

and Figure 10 and summarized in Table 6. It is noticeable that the 

MARWIL and PPO agents performed similarly and improved the 

energy efficiency by 9.33% to 9.64% over the rule-based approach 

respectively. The PPO agent achieved the best ΔSoC/100km of 

16.05 and the MARWIL was very close by only 0.06% difference. 

Although, the rule-based approach achieved the best rise time/°C 

of 21.24 sec and the second-best agent was the MARWIL by an 

increase of 5.46 sec. 

Decription Rule based PPO MARWILL 
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6.3 Long cycle testing with cold start 
 

Figure 11: Results of rule based agent on long cycle testing with 

cold start 
 

Figure 12: Results of PPO 0c6c9 and MARWIL 69081 (the best in 

this test case!) on long cycle testing with cold start 
 

 

ΔSoC/100km 36.84 34.38 33.97 

Rise time /◦𝐶 19.13 20.35 19.12 

 
Table 7: Test results for long cycle testing with cold start (drive 

cycle is DC-2, SoC0 = 90%, Tempinit = −7◦𝐶) 

The graph depicted in figure X and the data presented in ta- 

ble X demonstrate notable differences in the performance of three 

AI agents, with the MARWIL agent taking the lead by enhancing 

energy efficiency by 7.8% when compared to the conventional rule- 

based approach. The metric ΔSoC/100km stood at its best at 33.97, 

while the rise time/◦ was 19.12 seconds. A difference in the mode 
selection was observed between the PPO agent and the MARWIL 

agent, with the latter being initialized by the parameters of the PPO 

network. This observation substantiates our initial hypothesis that 

integrating continuous learning with offline algorithms can boost the 

efficiency of online algorithms that have been trained in simulated 

environments. 

Overall, the MARWIL agent was able to reduce the energy con- 

sumption by 15.07% in comparison with the conventional rule-based 

approach and proved that it is able to modify and adapt itself to the 

changes in the environment compared to the PPO agent which was 

developed in a simulation environment with a single training cycle. 

On the other hand, the MARWIL agent achieved 32.23 seconds to 

increase the cabin temperature by one degree Celsius compared to 

30.01 seconds of the rule-based approach. As an example, utilizing 

an RL agent will heat-up the cabin in 10min42s instead of 10min 

00sec by using the rule-based approach. On the other hand, the 

range of the vehicle will be extended by 15.07%. Therefore, it was 

concluded that such a drawback of having 2.22 secs increase in Rise 

time /◦𝐶 is acceptable for the sake of energy savings. 

6.4 Comparison to the optimal solution 

In parallel to the reinforcement learning solution, a dynamic pro- 

gramming solution was developed. Dynamic programming solution 

approximates the ideal solution on particular test settings. Initial 

comparisons show that our solution is comparable to the dynamic 

programming solution as well in terms of ΔSoC/100km. Since solu- 

tions differ in parameters and ways they prioritize energy efficiency 

and comfort metrics, additional effort has to be done to make both 

solutions fully comparable. 

7 Outlook 

In this paper, we explored the capabilities of reinforcement learning 

in optimizing control problem for automotive thermal management. 

Learning from data which replicates real world trajectories showed 

an improved strategy which reveals the potential of learning from 

real world data and adapting the policy trained in simulation. 

Both in-simulation training and agents trained from data which 

replicates real world trajectories surpassed the rule-based controller 

with significant savings in energy consumption and minimal sacri- 

fice in the rise time. 

Framework we have created in the process of preparing this pa- 

per allows us to reduce engineering effort for calibration new vehicle 

models by replacing manual creation of control policy with crafting 

the reward function. Thus, after building the plant model dedicated 

engineering work of creating the strategy becomes significantly sim- 

pler work of setting up the cost function for automatic optimization. 

As we conclude this research, several directions for future explo- 

ration emerge. Firstly, we will finalize the research which compares 

our results with the dynamic programming solution that is also de- 

veloped for this problem. 

Secondly, we intend to enhance our experiments by incorporat- 

ing the impact of vehicle/component aging on charging/discharging 

processes, such as the influence of battery age. Incorporating this 

aspect into the control framework will enhance the system’s ability to 

adapt to changing conditions and optimize performance accordingly. 

Another avenue for future research involves parametrizing the 

vehicle to simulate different vehicle models. By exploring the im- 

pact of various vehicle characteristics on the control system’s per- 

formance, we can gain valuable insights into the adaptability and 

robustness of the RL agents across different vehicle types and con- 

figurations. 

Furthermore, we propose a driver-customized control strategy 

that takes into account individual driving styles, ambient condi- 

tions, and street infrastructure. By tailoring the control system to 

the driver’s preferences and the specific environment, we can fur- 

ther enhance the overall driving experience and optimize energy 

consumption. 

Additionally, incorporating Vehicle-to-Everything (V2X) infor- 

mation and vehicle horizon data into the control framework holds 

great potential. By leveraging these external data sources, RL agents 
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can make more informed decisions, anticipate future events, and op- 

timize control strategies accordingly. 

Lastly, an intriguing direction for future research is controlling 

the actuators directly instead of relying solely on high-level mode 

selection. By directly manipulating the actuators, RL agents can 

fine-tune control actions with greater precision, leading to further 

improvements in energy efficiency and overall system performance. 

In conclusion, this research has demonstrated the potential of 

RL techniques in optimizing complex control problems for auto- 

motive applications. Both agents trained in-simulation with online 

algorithms and agents trained from data which replicates real world 

trajectories have showcased superior performance compared to rule- 

based controllers, achieving significant energy savings without com- 

promising rise time. The identified future research directions will 

undoubtedly contribute to advancing the field of automotive control 

systems and pave the way for more efficient, adaptive, and cus- 

tomized driving experiences. 
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Abbreviations 

• A3C - Asynchronous Advantage Actor Critic 

• ADAS - Advanced driver-assistance system 

• BEV - Battery Electric Vehicle 

• CCR - Capacity-Cost Ratio 

• Chlr - Chiller 

• DQN - Deep Q Network 

• FMU - Functional Mockup Unit 

• GRU - Gated Recurrent Unit 

• MARWILL - Monotonic Advantage Re-Weighted Imitation 

Learning 

• PGRL - Policy Gradient Reinorcement Learning 

• PPO - Proximal Policy Optimization 

• PWT - Powertrain 

• Rad - Radiator 

• RL - Reinforcement learning 

• V2X - Vehicle-to-everything 
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