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Abstract

Plug-in Hybrid Electric Vehicles (PHEVs) achieve signif-
icant fuel economy by utilizing advanced energy 
management strategies in controlling the power distri-

bution decision in real-time. Traditional heuristic approaches 
bring no additional benefits, including efficiency and develop-
ment cost, considering the increasing complexity in control 
objectives. This paper extends a previous study of the same 
problem (RL) and vehicle topology to develop a Reinforcement 
Learning agent by investigating the performance of state-of-
the-art algorithms, such as Rainbow-DQN with its variants, 
PPO and A3C, against the baseline rule-based and Dynamic 
Programming (DP) strategies. The developed RL agent is opti-
mizing challenging control objectives such as fuel economy, 
vehicle drivability and driver comfort. The Rainbow-DQN is 

studied separately to optimize the agent compared to all the 
algorithm variants and after wards, the best performing 
variant is compared to tuned PPO and A3C agents. Proper 
evaluation criteria is defined and the concerned agents are 
tested with nine different scenarios to examine the generaliza-
tion capabilities and performance robustness. The results 
revealed that the A3C agent surplussed both the PPO and the 
Rainbow-DQN achieving a maximum performance of 98.43% 
of the DP with a robustness of 97.32% ± 0.78 for the other 
cycles and an average of 177.7 sec for each engine start 
compared to 96.3 sec for the rule-based approach. Furthermore, 
as a future work, the paper investigated and proposed a cloud-
based training concept for automated scaled-up training, 
evaluation and deployment of RL policies for the (P)HEVs of 
the future.

Introduction

Motivation
In the recent decade, environmental concerns and the 
increasing global warming awareness led to strong govern-
mental legislations to control the emission levels for the auto-
motive manufacturers. EU passenger cars were restricted to 
95 gCO2/km in 2020, normalized to the New European 
Driving Cycle (NEDC), compared to 170 g/km in 2000 [1]. 
Plug-in Hybrid Electric Vehicles (PHEVs) offered a promising 
solution to minimize the emission level and fuel consumption 
of the conventional fuel vehicles while maintaining adequate 
range and less dependency on the electricity infrastructure 
compared to the electric vehicles. PHEVs are showing less 
than 2.2 l/100  km in the Worldwide Harmonized Light 

Vehicles Test Procedure (WLTP). The German market alone 
has 64% of the registered new electric passenger vehicles as 
PHEVs while they contributed to 45% of Europe’s electrified 
passenger vehicles in 2020 compared to just 3.3% in 2011 [2].

Nevertheless, PHEVs have two different Energy Storage 
Sources (ESSs), the High-Voltage (HV) battery and the 
Internal Combustion Engine (ICE), which requires a sophis-
ticated Energy Management Strategy (EMS) to coordinate and 
achieve significant improvement in the performance [3]. The 
automotive market witnessed revealing technologies recently 
such as autonomous driving, Intelligent Transportation 
Systems (ITS) and connected vehicles. Such technologies 
increase the control objectives of the vehicle systems and 
accordingly, hand-crafted traditional rule-based approaches 
are no longer bringing benefits due to having enormous 
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parameters to calibrate. Additionally, the parameters are cali-
brated empirically based on expert knowledge which does not 
mean that the obtained results are optimal. Moreover, the 
availability of sensors and environmental data cannot 
be utilized efficiently with the current approaches. Therefore, 
the heuristic approach nevertheless provides avenues for 
improving the vehicle’s energy efficiency and researching 
state-of-the-art intelligent control systems is becoming a 
must-have requirement for the future vehicles.

Literature Review
Dynamic Programing (DP), as an example for the optimiza-
tion-based control approaches, provides an optimal solution 
for the EMS [4, 5, 6, 7]. DP has a non-causal property which 
means it requires a finite horizon with a defined velocity and 
torque profile in the future in order to obtain global opti-
mality. Moreover, the developed strategy cannot be general-
ized to other cycles showing limited inferior capabilities and 
adaptability to complex driving cycles. The aforementioned 
drawbacks limited the applicability of DP to provide theo-
retical benchmarks for other real-time ‘implementable’ 
control techniques [8] and potentially guide certain other 
algorithms towards optimal solutions [9] in the PHEV domain.

Several researchers contributed to other optimization-
based approaches such as Equivalent Consumption 
Minimization Strategy (ECMS) [10], Model Predictive Control 
(MPC) [11], Explicit MPC (eMPC) [12] and Particle Swarm 
Optimization-based nonlinear MPC strategy (PSO-based 
MPC) [13]. Such approaches offered feasible solutions to real-
time controllers, although a trade-off between accuracy and 
real-time capability is to be considered. Tuning prediction 
horizon length and discrete-time sample highly affects the 
real-time performance of the MPC besides the selected vehicle 
model fidelity level, the optimization solver, and vehicle 
hardware capabilities as well [14].

Transformational era has begun with the expanding 
applications for machine learning that provided state-of-
the-art solutions to various problems in many research fields. 
Reinforcement Learning (RL) is an advanced mathematical 
formulation to control problems utilizing machine learning 
techniques and algorithms. RL became a topic of much 
interest in the AI community after achieving substantial 
performance with superhuman scores in playing Atari games 
[15], Chess and Shogi in AlphaGo Zero program by 
DeepMind [16]. Consequently, extensive attention by the 
research community is given to RL-based EMS approaches 
in PHEVs due to their ability to learn control policies 
through trial and error without explicit programming to 
follow a certain strategy.

After the rapid development of deep learning and neural 
networks in the recent years, Deep Reinforcement Learning 
(DRL)-based EMSs witnessed a significant increasing intel-
ligence. DRL algorithms can have value-based, policy-based 
or hybrid representation [17]. Value based algorithms tend to 
learn estimating the state-action pair value while the policy-
based algorithms learn the policy directly by interacting with 
the environment and adjusting the probabilities of good and 
bad actions. Hybrid algorithms, often called Actor-Critic (AC) 

algorithms, evaluate the quality of actions using the critic 
while the actor decides on the action based on a probability 
distribution and derives the policy. AC algorithms are more 
stable than value-based algorithms, while they require fewer 
training samples than policy-based algorithms.

Deep Q-Network (DQN) is a value-based algorithm used 
by Zhu et  al. in developing an EMS for a mild HEV and 
comparing the performance against DP and Adaptive-ECMS. 
The results revealed a significant improvement for the fuel 
consumption with a near optimal solution achieved by the 
agent [18]. Meanwhile, policy-based algorithms such as 
Proximal Policy Optimization (PPO) showed an average fuel 
reduction of 3.1% compared to the reference strategy when 
utilized by Hofstetter et al. in controlling the torque split of 
an HEV [19].

Furthermore, Liessner et al. utilized a Deep Deterministic 
Policy Gradient (DDPG) agent, which is a hybrid AC algo-
rithm, to consider different drivers behavior which showed 
improvement in the fuel economy up to 96.3% of the DP 
optimal strategy [20]. Moreover, a continuous action space 
was employed by He et al. to control the power split ratio, 
engine speed and torque [21]. The DRL horizon was extended 
to include optimizing charging/discharging strategies [22], 
predicting vehicle speed and power demand trajectories, 
utilizing weather and traffic conditions in a Vehicle-to-
everything (V2X) environment [23], and learning the drivers 
behavior cooperatively in a Vehicle-to-Vehicle (V2V) environ-
ment using asynchronous variants of standard RL 
algorithms [24].

Contribution
This paper extends the author’s previous work that: 1) proposed 
an novel practical approach to incorporate the RL-agent into 
a real vehicle Hybrid Control Unit (HCU); 2) applied value-
based tabular and deep Q-learning algorithms; 3) presented an 
Extended-DQN (E-DQN) agent that was tested and verified for 
generalization capabilities in an industrial High Fidelity Model 
(HFM) achieving up to 10.46% improvement in fuel economy 
[25, 26]. The same vehicle topology is considered in the present 
research while the functional architecture is explained in more 
details and applied to the other algorithms as well.

The main contributions of this research are:

•• Developing a tailored training environment for the EMS 
problem of (P)HEVs mainly based on Ray RLlib and 
OpenAI Gym libraries with highly scalable and 
distributed computation capabilities.

•• Investigating the applicability, performance and 
robustness of various state-of-the-art RL algorithms 
such as Rainbow DQN, PPO and A3C.

•• Optimizing several control objectives simultaneously 
such as fuel economy, vehicle drivability and driver 
comfort measured in average engine run period.

•• Challenging the generalization capabilities of the best 
performing A3C agent by inferring it into nine different 
test cases and evaluating against a well-defined 
evaluation criteria.
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The experimental results reveal that the A3C agent 
surpassed the rule-based controller by achieving a maximum 
performance of 98.43% of the DP with a robustness of 97.32% 
± 0.78 for the other test cases, and an average of 177.7 sec for 
each engine start compared to 96.3 sec for the rule-
based approach.

Paper Outline
The remainder of this paper is organized as follows: section 
2 develops the vehicle model in python environment, based 
on the same P2 powertrain configuration previously used in 
[25, 26], and an improved basic logic derived from the existing 
HCU representation of the Simulink HFM. In section 3, the 
problem is formulated mathematically and an OpenAI 
Gym-based environment is created to enable a compatibility 
with RL open-source libraries such as Ray RLlib and Stable 
Baselines. Section 4 presents the experimentation analysis 
and results of several state-of-the-art algorithms such as 
Rainbow-DQN with its variants, PPO and A3C against the 
baseline rule-based and DP strategies. Finally in section 5, 
the findings are summarized and the conclusion is drawn for 
this study. Moreover, the research team’s future work of incor-
porating a cloud-based training cycle for automated scaled-up 
training, evaluation and deployment of RL policies 
is explained.

Vehicle Modeling

Powertrain Architectures
The architecture of a hybrid vehicle’s powertrain is more 
complex compared to the traditional vehicles and it can 
be classified into three different powertrain architectures: 
series, parallel, and power-split (series/parallel) [27]. The 
power-split architecture considered by this research, shown 
in figure 1, makes it possible to achieve a synergy based on 
the advantages of the series and parallel architectures.

The ICE operates at an optimum efficiency and can 
provide propulsion solely, avoiding the accumulated energy 
conversion losses. The power-split architecture is more 
complex with three energy systems, several electrical and 
mechanical couplings in between, which underlines the need 

for an adequate EMS to control such complex 
transmissions efficiently.

In the power-split configuration, other powertrain archi-
tectures are possible as well, as shown in figure 2, such as: 1) 
P0 where HEVs feature a Belt Driven Starter/Generator (BSG) 
that is directly coupled to the ICE. 2) P1 which locates the EM 
on the crankshaft, known as Integrated Starter/Generator 
(ISG). 3) P2, the configuration used throughout this research, 
which locates the EM on the gearbox input, after the clutch 
offering higher efficiency without ICE drag torque losses by 
disconnecting it from the EM, which makes pure electric drive 
possible. 4) P3 which has the EM at the gearbox output. 5) P4 
on the contrary locates the EM on the driving axle, connected 
to the wheels all the time [16, 17, 18].

Hybrid Control Units
The fuel improvement in HEVs ranges from 10% in mild 
hybrids up to more than 30% for highly hybridized vehicles 
[29]. Providing the HCU with sophisticated strategies is 
needed to realize such a potential. As a vital component in 
the powertrain, HCU works coherently with several vehicle 
subsystems such as Human-Machine Interface (HMI) with 
the driver’s demands, Transmission Control Unit (TCU), 
Engine Control Unit (ECU), Battery Management System 
(BMS), etc. The aforesaid systems send status signals, several 
limitations, and requests to the HCU as shown in figure 3. All 
the inputs, combined with the driving situation, are processed 
within the HCU and the target “optimum” settings for the 
drivetrain components are selected.

The HCU has a traditional EMS called Charge-Depletion 
Charge-Sustaining strategy (CDCS) that favors the use of 
electric propulsion up to the minimum State of Charge (SoC) 

 FIGURE 1  Hybrid vehicle power-split (parallel/series) 
configuration [27]

 FIGURE 2  The configurations of HEVs based on the EM 
location [28].

 FIGURE 3  Various input signals from vehicle components 
and output signals utilized by HCU [25, 26].
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level of the battery, then switching to ICE propulsion mode. 
It is preferred for PHEVs to run out of charge after a driving 
trip, where an external charging source shall be available to 
offer a battery charge. In this case, more electricity is utilized, 
which means more fuel is saved [30].

P2-HCU has a model to generate the quasi-stationary 
requests for the ICE, EM, and drivetrain components which 
are calculated in parallel for each hybrid mode. The operation 
modes are classified as fixed modes and free modes according 
to Ambühl et al. [31].

Fixed modes are selected by certain fixed rules inside the 
HCU and cannot be overridden by the EMS as follows: 1) 
Additive Boost (acronym: AB {mode index: 1}): this mode 
is selected when the maximum ICE torque cannot offer the 
demanded traction torque. The EM is started to supply the 
extra torque needed by the driver. 2) Recuperation (R {7}): it 
is a regenerative breaking mode that slows down the vehicle 
with negative torque requests by utilizing the generator’s 
negative torque. 3) Open Drive (OD {8}): this mode is enabled 
when the vehicle is stationary by turning off the ICE and deliv-
ering power from the EM to the transmission oil pump that 
controls the clutches.

Free modes are selected upon the availability of several 
modes simultaneously. This means the system can be operated 
using any of the available modes and the EMS decision is 
required to achieve the optimization objectives. They are as 
follows: 1) Conventional Drive (CD {0}): the ICE is propelling 
the vehicle in this mode and supplying the low voltage auxil-
iaries. 2) Optimum Generation (OG {3}): the ICE load point 
can be shifted to a more efficient location when the demanded 
torque is low, and the leftover power is consumed by the 
generator for charging the High Voltage (HV) battery. 3) 
Electric Drive (ED {6}): this mode enables pure electric drive 
for the vehicle with a decoupled ICE.

The PHEV has several system constraints, safety, diag-
nostics, and protection limitations that shall be fulfilled by 
the EMS. The HCU meets such conditions by a heuristic 
approach which the developed strategy shall not override. 
Therefore, the conditions imposed by the system functional-
ities are defined as a mode enabler vector which is considered 
by the learning-based strategy to select the appropriate action 
each time step. In this way, only the modes that are allowed 
from the system point of view will be chosen and no violations 
to the system boundaries are possible.

The conventional RL architecture is shown in figure 4a 
where the agent freely selects the action according to its policy 
and the environment responds with the system state and 
reward. Figure 4b illustrates the modification proposed to the 
RL architecture. The main part of the HCU decides on the 
available modes for the EMS to select from, according to its 
rule-based control scheme, and constructs the ‘mode enabler’ 
logical vector. This vector is utilized by the RL agent, with the 
action masking technique presented by Vinyals et al. [32], to 
select the best action from the available actions according to 
the RL policy.

The selected action is further processed into the HCU 
remaining control functionalities and sent to the environment 
to be executed. The reader is referred to [25, 26] for the details 
of including the action masking into the RL agent decision process.

Vehicle Model
Having a reliable vehicle dynamics model that represents the 
plant to be controlled is crucial for developing the EMS. The 
AVL DSP department provided a high-fidelity plant model 
that brings a huge computational burden. Therefore, a quasi-
static control-oriented vehicle model that maintains the 
vehicle physical causality is developed and used for the RL 
agent training and testing.

Model Parameters The vehicle powertrain component 
parameters are listed in table 1.

Longitudinal Vehicle Model The longitudinal vehicle 
model depends on the dynamics of the vehicle to calculate the 
power and torque demanded. Equation (1) governs the power 
demand Pd considering the vehicle moves on a road with 

 FIGURE 4  a) The conventional and b) the proposed RL 
architecture [25, 26].

TABLE 1 Component parameters of the studied P2 PHEV 
model [25, 26].

Component Parameter Value
Vehicle Total mass 1998 kg

Frontal area 2.349 m2

ICE Type 1.2L TGDI Gasoline 
Engine

Maximum power 102 kW @ 5500 rpm

EM Type Permanent Magnet 
Synchronous Motor

Maximum power 94 kW

Battery Capacity 14.71 kWh

Nominal voltage 350 V

Maximum charge/
discharge current

450 A

Useable SoC range 20% - 95%

Transmission Type 7-speed dual-clutch 
with gear ratio [16.803 
9.454 6.323 4.709 
3.497 2.776 2.385]

Misc. Electrical auxiliary 
load

500 W
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inclination θ where Tintloss
 is the drivetrain internal torque 

losses, and Fext is external forces.

	 P T F Vd extloss� �� � � �� �int � 	 (1a)

	 F F F F Fext aerodynamics tire gravity inertia� � � � 	 (1b)

	 F AC Vaerodynamics d� 1

2
2� 	 (1c)

	 F mg Ctire r� � �cos � 	 (1d)

	 F mggravity � � �sin � 	 (1e)

	 F mainertia = 	 (1f)

The ω is crankshaft rotational speed, ρ is the air density, A is 
the frontal area, Cd is the aerodynamic drag coefficient, Cr is 
rolling resistance coefficient, m and V are vehicle mass and 
velocity respectively. The drivetrain Tintloss

 results from the 
internal mechanical friction losses which is modeled in the 
component models in the following section.

Drivetrain Component Models The models for drive-
train components are developed based on mathematical 
models and empirical performance maps. The ICE has a quasi-
static fuel consumption model with neglected engine tran-
sients due to being much faster than the vehicle dynamics. 
The Brake-Specific Fuel Consumption (BSFC) map is plotted 
in figure 5 and governed by the function described in 
equation (2).

	 m f Tfuel ICE ICE ICE� � �� , 	 (2)

Equation (3) calculates the motor efficiency ηEM similarly 
for both modes for the EM, the motor drive in the positive 
torque region and the generator in the negative torque region, 
as shown in figure 6.

	 � �EM EM EMf T� � �, 	 (3)

The delta of the HV battery SoC is calculated by equation 
(4). Voc, Rbat, Pbat, Qbat are the battery Open-Circuit Voltage 
(OCV), Internal Resistance (IR), terminals consumed power 
and capacitance respectively.

	 �SOC V V P R Q Roc oc bat bat bat bat� � � � � ��( ) /2 4 2 	 (4)

For the sake of model simplicity, the battery pre-determined 
maps are used to estimate the OCV and IR only at 25 °C and 
the battery SoC thresholds are set to be [20%, 95%] for main-
taining the battery health.

Methodology
Reinforcement Learning is a revolutionary machine learning 
technique to solve complex control problems by rewarding 
desired behavior patterns and punishing undesired ones [17]. 
The RL agent is interacting with its environment, decide on 
actions to take and build knowledge through trial and error 
based on the environment feedback.

Problem Formulation
The EMS problem is formulated as Markov Decision Process 
(MDP) defined with the parameters S A P R, , , , ,� s0� � where   
is the system states,  is the available actions,   is the transi-
tion probability function defined by P S A S�� � � �, the 

 FIGURE 5  ICE BSFC map (g/kWh) [25, 26].

 FIGURE 6  EM efficiency maps [25, 26].
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reward function R S A�� � �, the discount factor γ ≤ 1 
and the system initial state s0. Learning a stochastic policy 
� � � �S A  is the target of the RL algorithms. The policy 
shall maximize the cumulative future reward of an episode 
discounted by the γ factor �t

T t
tr�0�  where rt is the reward at 

time step t as a function of the current state st and the executed 
action at.

The EMS problem is bounded by a continuous state space 
defined by sk  =  [SoCt, Tdt, Vt, Dremt, Eont] where SoCt is the 
current battery state of charge at time step t, Tdt is the driver 
torque demand, Vt is the vehicle velocity, Dremt is the trip 
remaining distance and Eont is the engine on/off state. Dremt is 
included in the state space to express the agent progress in the 
episode to provide adequate segregation between states which 
was noticed to improve the agent learning significantly upon 
inclusion. Eont is included to give the agent insight over the 
engine current state because in the reward function definition, 
frequent engine switching (on and off) is penalized to comply 
with the driver comfort requirement. Furthermore, the EMS 
problem has a discrete action space where the control variable 
is the vehicle driving mode index at ∈  {0, 1, 3, 6, 7, 8}. The 
P2-PHEV’s discrete-time control optimization problem, 
system constraints and reward function are described in equa-
tions (5) to (11).
	

SoC T V D E f SoC T V D Et d t rem on t d t rem ont t t t t t� �� � �� � �1 11 1 1, , , , , , , ,�� �� �
� � �

,

T

a

t

t ,

, ,0 1 1
	

(5)

	 min J s E r s a
t

T
t

t t� �0

0

1

� � � � �
�
�
�

��

�
�
�

���

�

� , 	 (5)

Subject to:

	 at �� �0 1 3 6 7 8, , , , , 	 (6)

	 SoC SoC SoC SoC SoCt tt initmin max ,� � �0 	 (7)

	 T T TICE ICE ICEt t tmin max� � 	 (8)

	 T T TEM EM EMt t tmin max� � 	 (9)

	 T I IBat Bat Batt t tmin max� � 	 (10)

The reward function used in this research considers: 1) the 
fuel consumption, 2) the space-domain indexed SoC reference 
to guide the SoC depletion rate gradually in the entire trip and 
3) the engine frequent switching on and off. The reward function 
is similar to the author’s previous work [25, 26] but it was 
modified to exclude the hyperbolic tangent function as it 
showed increased unnecessary non-linearity for the agent to 
model without bringing additional benefit to the network 
convergence. The reward function is governed by equation (12) 
where χ, φ, ψ are set to 48, 172 and 1 respectively after 
careful tuning.

	
R m SoC SoC E

SoC

t fuel t reference on

reference

t t� � � � � � � �� �
�

� � �� | | ,

SSoC d D d D SoCinitial final. / /1�� � � �
	 (12)

The training framework was built based on Ray RLlib 
which is an open-source library providing scalable and 
production-level RL algorithms with highly distributed work-
loads and unified APIs [33]. RLlib provided our application 
with advanced capabilities such as vectorized environments 
for parallel rollouts, parallel trainings as shown in figure 7, 
multi-GPUs support, synchronous/asynchronous sampling 
capabilities, and RL training in online environment or offline 
using collected data from the HFM simulations.

The environment model is built using OpenAI gym inter-
face which is a standardized API compatible with several RL 
libraries such as Stable Baselines, RLlib, Keras, …etc [34]. The 
environment contains most importantly the vehicle physical 
model and the basic rule-based HCU logic module as shown 
in figure 8. The latter handles the mode enablers and provides 
the vehicle’s physical and parametric limitations. RLlib 
empowered our application with a unified interface to deal 
with action masking via the parametric action space for all 
the supporting algorithms. Other libraries were unofficially 
providing this feature such as Stable Baselines which only 
considered the PPO among all other algorithms till the date 
of writing this paper.

On the HFM implementation level, figure 9 illustrates the 
functional software architecture in more details. The normal 
operation of the HCU includes observing the vehicle state and 
requests in the Observers module. Afterwards, the traction 
torque is determined, and all quasi-stationary modes are 
calculated in parallel and the mode-enablers vector is created. 
The Mode Selection module handles the CDCS strategy and 
selects the mode accordingly which is processed to determine 

 FIGURE 7  RLlib training workflow [33].

 FIGURE 8  RL training framework for the PHEV 
problem [33].
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the powertrain component requests and they are coordinated 
with the corresponding Control Units (xCU).

On the other hand, the RL modules have its own 
Environment Wrapper which processes the vehicle observers 
and send the state and reward signals to the agent. The RL 
Agent module comprises the ‘Deploy’ unit which includes the 
policy and the ‘Train’ unit which has a storage memory for 
collecting experiences and the training algorithm. RL policy 
processes the mode enablers vector from the HCU’s Mode 
Calculations module and decides on the action only within 
the available modes. Furthermore, RL policy obtains an 
updated policy from time to time from the learning algorithm 
to be executed for future decisions. Nevertheless, the ‘Train’ 
unit in the RL Agent is not involved in the real-time control 
decision, hence it can be decoupled from the HCU hardware 
unit and included on a separate xCU or hosted on the cloud 
for extended resources.

Deep Q-Network (DQN) 
Based EMS
DQN is a Q-Learning value-based algorithm that utilizes deep 
learning to empower the RL agent to deal with high-dimen-
sional continuous spaces. The Q-learning algorithm comprises 
the action-value function (s,) which describes the expected 
discounted cumulative rewards till the end of the episode 
given the current state s, taking the action a and following the 
optimal policy π* after. This policy is implicitly included in 
the optimal Q function Q*(s,a) by taking the action that has 
the highest Q-value in a certain state. Q*(s,a) shall satisfies the 
Bellman equation Q s a r Q s as s a a

�
� �

�
� �� � � � � ��� ��� �, ,|, |,� max  

where s′, a′ are the next state and action respectively while γ 
is the discount factor and r is the reward.

DQN uses a neural network to approximate the Q*(s,a) 
function by training it to minimize the loss 
L � � � �� � � � � � � � �� ��

��
�
��

� �� �� � s a s r ar Q s a Q s a, , , , ; , ;max
2

.  This 
algorithm witnessed developing different variants recently such 
as Double-DQN [35], Dueling-DQN [36], Prioritized Experience 
Replay (PER) [37] and n-steps bootstrapping [17]. Double-DQN 
uses two networks, the policy network with parameters θ and 
target network with parameters θ−, to reduce the observed 

Q-values overestimation bias by decoupling the action selection 
from the target Q-value estimation, leading to a more stable 
training and an improved policy. The loss function is modified 
to estimate the Temporal Difference (TD) with the next Q-value 
from the target network instead, as described in equation (13).

Dueling-DQN improves the learning by allowing the 
network to better

	 L �� � � �� ���� � s a s r TD, , ,
2 	 (11)

	 TD r Q s a Q s aa� � � � � � �� �� ��
�� � �max , ; , ; 	

differentiate the action values. The Q-value is split into 
(s) which is the value of being at state s and the advantage 
A(s,a) calculated by a separate stream in the network such that 
Q(s,a)=V(s)+A(s,a). PER-based DQN prioritizes the experience 
sampling from the memory buffer according to their impor-
tance and significance instead or random sampling. The loss 
function for the training batch of instances m is modified 
according to equation (12) where β  ∈  (0  ≤  β  ≤  1) is the 
Boltzmann distribution that controls the amount of prioritiza-
tion, ε is a small number to avoid the zero division, and α 
determines the priority sampling degree.

	 L
m

TD
TD

N TD

k
N

k

i

�
�

�

�

�

�

� � � � � � �� �
�� �

�

�
�
�

�

�
�
�

�
�1 2

i

m

1

�

.
	 (12)

N-steps bootstrapping unrolls the recursive Bellman 
equation for n times with replacing Q(s′,a′) by the next reward 
and the discounted estimate at state s′′ assuming a′′ is chosen 
optimally or near optimally from the agent’s current policy. 
All of these variants are combined in an outperforming state-
of-the-art algorithm called Rainbow-DQN [38] which is 
experimented for the EMS problem and tuned to improve 
the performance.

Proximal Policy Optimization 
(PPO) Based EMS
In Policy Gradient (PG) methods, the policy π(a|s; θ) is directly 
parameterized as a distribution over actions. PPO is a 

 FIGURE 9  The functional architecture of RL-based HCU software.
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critic-based policy gradient method, which trades-off between 
sampling data from the rollouts and optimizing the surrogate 
objective function with stochastic gradient ascent. PPO has 
better sample complexity over the Trust Region Policy 
Optimization (TRPO) by removing the KL penalty and the 
need to make adaptive updates while maintaining the compat-
ibility with stochastic gradient descent [39]. The objective 
function with adaptive KL-penalty is described in equation 
(13) where β is the KL coefficient and At is an estimate of the 
advantage function at timestep t.

	 L �
� �
� �

� � �� � � � �
� �

� � ��

�
�

�

�
� � s a r

t t

t t old
t oldt t t

a s

a s
A KL, ,

| ;

| ;
, ��	 (13)

β is annealed in the RLlib implementation while the 
clipping can be used instead as well. The value function loss 
is defined in equation (14) where c1, c2 are the value function 
and the entropy coefficients respectively, while S denotes the 
entropy bonus and Lt

VF �� � is the squared loss V s Vt t
target

� � � �� �2
.

	 L � � ��� � � � � � � � �� ��� ��̂t t
CLIP

t
VF

tL c L c S s1 2 	 (14)

Asynchronous Advantage 
Actor Critic (A3C) Based EMS
A3C is a policy gradient algorithm that combines learning an 
explicit policy (at |s ; θ) to select the best action, and estimating 
the state-value function V(st ; θv) to determine how good each 
state is. The algorithm uses a mix of n-step returns to update 
both the policy and the value-function. A3C utilizes a critic 
network to learn the value function while several actors are 
trained in parallel and sync the accumulated gradients with 
the global parameters for training stability. In figure 10, the 
algorithm launches several workers asynchronously where 
they interact with their own instance(s) of the environment, 

train their own copy of the network and share the results at 
the end of the simulation. This results in a more diverse in the 
experience collected from each worker, better learning effi-
ciency and faster training.

The network parameters (θ, θv) are updated with the loss 
function L(θ, θv) and the advantage function At (st, at; θ, θv) 
with the hyperparameter k as given by equations (15) and 
(16) [24].

	 L H� � � � �, , , ,v s a s r t t tA A a� � � � � � � � ��� ���� � 2 log ,	 (15)

A s a r V s V st t t v
i

t i
k

t k v t v, ; , ; ;� � � � � �� � � � � � � � �
�

�

� ��
i

k

1

1

	 (16)

The first term in the loss function optimizes the value 
function while the second optimizes the policy function. The 
exploration is encouraged by the third term via the entropy 
of the policy ℋ(π) and the scaling parameter β.

Results and Discussion

Environment Model
In this research, three standard driving cycles are used: the 
New European Driving Cycle (NEDC), the Highway Fuel 
Economy Driving Schedule (HWFET) and the Urban 
Dynamometer Driving Schedule (UDDS) [41]. Moreover, an 
in-house cycle provided by the simulation team in AVL, 
presenting a commuter route in Graz city in Austria, was 
used for evaluating the agent performance as well. The devel-
oped vehicle model was validated by running Graz cycle and 
6-NEDC (six adjoining NEDC cycles to exceed the vehicle’s 
all electric range) on the HFM utilizing the CDCS strategy 
and recording the inputs to test the vehicle model with. The 
fuel consumption and SoC trajectory were determined and 
compared to the HFM results. The vehicle model showed 
negligible discrepancy compared to the HFM by maximum 
absolute error in fuel consumption of 74.1, 51.7, 26.6 ml and 
in SoC trajectory of 1.7, 2, 0.9% for NEDC cycle with 95%, 
20% SoCinit and Graz cycle with 75% SoCinit respectively. 
Contrariwise, the vehicle model showed 2032x faster perfor-
mance by achieving a step time of 0.33378 ms for one real 
time step compared to 678.36 ms of the HFM model.

Evaluation Criteria
To evaluate the performance of the developed RL agents, 
evaluation metrics have been defined as follows:

	 1.	 Fuel economy feco (%): the driving cycle fuel 
consumption (l/100 km) related to the DP 
performance on the same cycle and SoCinit. The fuel 
economy shall be improved over the CDCS 
performance on average.

	 2.	 Average engine run period (sec/Eon): the trip duration 
divided by the number of engine starts shall not 

 FIGURE 10  A3C high-level architecture [40].
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be lower than the CDCS performance on the 
same cycle.

	 3.	 Performance robustness (%): the strategies 
performance robustness is measured for N cycles by 
the mean μ and standard deviation σ of the fuel 
economoy feco as shown in equation (17).

	 � � �� � �� �
�

�

�
� �
i

N

0

1

f N
N

feco

i

N

ecot i/ ,
1

1

2 	 (17)

Rainbow DQN Study
A separate study is conducted in this section similar to the 
study carried out by Hessel et al. who introduced the Rainbow 
DQN agent based on studying the effect of each and every 
variant of the DQN algorithms such as Double-DQN, 
Dueling-DQN, Multi-step learning and PER [38]. All such 
variants were shown to be largely complementary and the 
Rainbow-DQN agent that combines all of them showed 
superior performance in terms of data efficiency and 
final performance.

Similarly, the Rainbow-DQN agent is trained with our 
environment and compared to four other ablated variants to 
determine the effect of each component to the performance 
in the EMS problem. The four agents were 1) vanilla DQN, 2) 
no double, 3) no PER and 4) no n-step. Other components 
investigated by Hessel et al. such as Dueling-, Distributional 
and NoisyNet-DQN were not compatible with our 

environment utilizing the parametric action space, therefore 
were not included in the experimentation.

The agents were trained on HWFET cycle with 30% 
SoCinit for 7.75 million timesteps. The machine, which has a 
4.00 GHz Core i7-6700K with 32 GB of RAM and a NVIDIA 
GTX 1080 Ti GPU, achieved an average time of 83 mins for 
each agent which has 7 parallel workers and 2 vector environ-
ments. The training hyperparameters used for all agents are 
listed in table A1 in appendix A. It is worthwhile to mention 
that the learning rate was halved for the Vanilla DQN agent 
after noticing a diverging performance.

The results in figure 11 revealed that all agents converged, 
and the policies were improving by time, however, the vanilla 
DQN agent had the least stable performance with higher oscil-
lating loss trajectory.

On the contrary, ‘no Double’ agent achieved the best 
results followed by the ‘Rainbow’ with minor differences 
which shows that prioritized replay and n-step learning are 
the most two crucial components, and this agrees with the 
findings of Hessel et al. The removal of these components, 
especially the n-step learning, hurt the training stability and 
the final performance. Accordingly, the ‘no Double’ agent is 
recommended out of the DQN variants for the 
subsequent experimentations.

State-of-the-art RL 
Algorithms Comparison
A comparative study is conducted to compare three model-
free approaches: the selected DQN, PPO and A3C agents. 
Similar to the DQN study, the agents were trained on HWFET 
cycle with 30% SoCinit for 7.75 million timesteps utilizing the 
same architecture for the training.

The DQN agent utilized the Rainbow configuration but 
with single neural network for both policy update and target 
estimation. PPO agent used a shared network to represent the 
policy and value function which allows useful features to 
be shared while sacrificing interference between objectives a 
bit. On the other hand, A3C agent used a Generalized 
Advantage Estimator (GAE) with the value function, clipped 
gradients and entropy-based regularization. Employing 7 
parallel workers and 2 vector environments for each agent, 
PPO achieved the longest training time of 138 mins compared 
to 86 mins for the DQN while A3C achieved the fastest 
training time of only 40.1 mins. The training hyperparameters 
used for all agents are listed in tables A1–A3 in appendix A.

Figure 12 shows the Value Function (VF) loss, the Policy 
Function (PF) loss and the training rewards as well. The three 
agents were developing a proper approximation to the envi-
ronment return with a decreasing VF loss while the PPO and 
A3C (the PG-based algorithms) were improving the policy by 
time as shown in PF loss curves. Results in figure 12f revealed 
that both A3C and PPO agents started with a highly random-
ized policy achieving poor rewards at the beginning of the 
training while DQN started with a relatively better policy. A 
clear-cut outcome is that A3C quickly surpassed both DQN 
and PPO agents only after one million time steps while PPO 
achieved the second-best performance.

 FIGURE 11  DQN study results.
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The Learned Policy Evaluation
This section is devoted to the learned policy characteristics of 
the trained agents. The generalization capabilities are evalu-
ated by inferring the agent into new unseen cycles such as 
Graz, 6-UDDS and 4-HWFET, each with 25%, 50% and 75% 
of SoCinit. The numerical results are summarized in table A4 
in appendix A for the three agents while the performance 
figures are shown in figures 13–15, referring only for the A3C 
as the best performing agent compared to CDCS and DP.

The performance figures shed the light on the developed 
strategy of utilizing the electric drive in the low speed regions 
and using the engine more on the high-speed segments. 
Moreover, the strategy tries to deplete the battery energy 
wisely through the whole trip compared to the CDCS which 
depletes the battery first, then sustains the SoC by using the 
engine for the rest of the trip. This agrees with the results of 
our previous work that developed the E-DQN agent for the 
same vehicle [25, 26], however the three agents noticeably 
performed better than the E-DQN.

The results in table A4 showed that the A3C agent outper-
formed the PPO, DQN and the CDCS relative to the DP. It 
showed the best performance improvement in the 6-UDDS 
cycle with 75% SoCinit by achieving 96.14% of the DP compared 
to 83.81% in the CDCS with a 12.33% improvement, while the 
second-best improvement was 10.43% in Graz cycle after 
achieving 98.43% of the DP performance for the same SoCinit 
level. The performance robustness of the A3C agent was a 
maximum of 97.32% ± 0.78 in the high SoC level compared 

 FIGURE 12  The three agents comparative study results for 
the Value Function (VF) loss, Policy Function (PF) loss and the 
training rewards.

 FIGURE 13  Graz cycle evaluation results for the A3C agent 
compared to CDCS and DP.

 FIGURE 14  6-UDDS cycle evaluation results for the A3C 
agent compared to CDCS and DP.
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to 96.74% ± 1.13 for the low SoC level. Moreover, it achieved 
a maximum engine run period of 494 sec/Eon compared to a 
minimum of 91 sec/Eon while the CDCS achieved 191 sec/Eon 
and 38 sec/Eon respectively.

The improvement in the fuel economy was significant, 
therefore the performance BSFC map for the three cycles with 
75% SoCinit are plotted in figure 16 to further understand the 
strategy behind. The A3C agent located the load points closer 
to the DP and in more efficient region than the CDCS. The 
cognition of better engine utilization and higher fuel economy 
is confirmed by the DP and the RL adjacency, which is closer 
than between the DP and the CDCS.

Conclusion

Concluding Remarks
Energy management strategy is an essential and vital compo-
nent of the (P)HEVs to realize high level of efficiency and 
improvement in fuel economy. Recently, RL showed an 
increasing capability in solving complex problems alongside 
providing proven efficient strategies for (P)HEVs. In this 
paper, we extended our previous work in [25, 26] to develop 
a python-based framework and include three state-of-the-art 
RL algorithms, namely Rainbow DQN, PPO, and A3C, in a 
comparative study. A detailed experimental evaluation is 
presented to estimate the generalization capabilities and 

robustness. The results revealed that A3C is outperforming 
both Rainbow-DQN and PPO by achieving a maximum 
performance of 98.43% of the DP for the Graz cycle with high 
level of energy onboard to utilize, while the agent performance 
reached a robustness of 97.32% ± 0.78 in other cycles with the 

 FIGURE 15  4-HWFET cycle evaluation results for the A3C 
agent compared to CDCS and DP.

 FIGURE 16  BSFC maps for the A3C agent compared to DP 
and CDCS.
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same initial SoC level. Moreover, the A3C was able to extend 
the average engine run period to 177.7 sec/Eon while CDCS 
achieved only 96.3 sec/Eon. This concludes that A3C agent 
maintained a satisfactory balance between the fuel economy 
and the driver comfort/vehicle drivability objectives.

Future Work
Connected vehicles in a networked environment is a research 
hotspot in the automotive industry. In the near future, the 
road vehicles would be capable of communicating with each 
other and possibly optimizing their performance in a collab-
orative approach. Accordingly, the future vehicle controller 
shall not only consider the onboard energy efficiency but also 
more objectives including other vehicles objectives in a coor-
dinated and harmonized way. Advanced learning methods 
such as the asynchronous variants of RL algorithms [24] open 
the door for shorter computational time and realizing parallel 
distributed calculations.

Figure 10 showed the architecture of the A3C algorithm 
with several workers and global network. This workflow 
inspires developing a cloud-based training environment for 
a fleet of (P)HEVs equipped with RL agents. Our team is 
proposing a concept of deploying an intelligent RL agent into 
a test vehicle and connect it to the cloud for training purposes 
in a so called “cloud-environment cycle”. As shown in figure 
17 in the prototype vehicle, the RL-ECU is communicating 
with the vehicle’s HCU for observing the states and deciding 
on an action for the next time step. The functionality is 
extended beyond the previous architecture, shown in figure 
4b, to incorporate a memory for storing the collected experi-
ence and a communication module for cloud connectivity. 
The experience data is sent to the cloud from time to time by 
the vehicle and by others in the future scaled-up model. The 
received data by the cloud is stored in a ‘Data Lake’ that filters, 
categorizes, archives the data, and prepares for feeding the 
offline RL trainer.

Similar to the global network in A3C architecture, the 
RL trainer further trains the current policy with new diverse 
experience from all the agents connected to the cloud, and 
the trained ‘new’ policy and the old policy are deployed to two 

HFM model instances for testing and evaluation. The policy 
evaluator handles evaluating and comparing the results from 
both policies and decides on the updated RL policy accord-
ingly. Such an updated RL policy is communicated to the fleet 
RL-ECUs to deploy and utilize for future decisions. This 
approach is embraced by our team for future research focusing 
on the development aspect besides prototyping it to examine 
the validity in real vehicle’s environment.
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Appendix A
Tables A1–A3 list the training hyperparameters used for the 
agent in the Rainbow-DQN study, the PPO and the A3C 
agents respectively. Furthermore, table A4 summarizes the 
evaluation results of the trained RL agents (the selected DQN, 
PPO and A3C) and the CDCS, with the DP as a benchmark 
for all the agents.

TABLE A2 PPO agent training hyperparameters.

Learning rate schedule 
[episode, μ]

[[ 0, 0.003],  
[ 10k, 1e-5 ]]

Train batch 
size

4096

Rollout fragment length 200 Buffer size 100,000

Discount factor γ 0.99 Clip param 100

VF loss coefficient 1 FCnet 
hiddens

[2x256]

Entropy coefficient 0.01 Lambda λ 0.9

KL coefficient β 0.1 Horizon 5000

KL target 0.03

TABLE A3 A3C agent training hyperparameters.

Learning rate schedule 
[episode, μ]

[[ 0, 0.003], 
[ 10k, 1e-5 ]]

Train batch 
size

32

Rollout fragment length 20 Buffer size 100,000

Discount factor γ 0.99 Gradient 
clip

40

VF loss coefficient 0.5 FCnet 
hiddens

[2x256]

Entropy coefficient 0.01 Lambda λ 0.9

TABLE A1 DQN agents training hyperparameters.

Learning rate schedule 
[episode, μ]

[[ 0, 0.01],  
[10k, 0.0033 ]]

Train 
batch 
size

32

Epsilon schedule 
[episode, ε]

[[ 0, 1.0], [ 7.5k, 
0.1 ]]

Buffer 
size

100,000

Target net update 
frequency

20,000 n-steps 3

Rollout fragment length 8 FCnet 
hiddens

[4x64]

Discount factor γ 0.99 ©
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TABLE A4 Evaluation results of the trained RL agents and the CDCS compared to the DP. The best values achieved between the 
agents for each cycle is formatted in bold.

Algorithm
Initial 
SoC (%)

Driving 
Cycle

Terminal 
SoC (%)

Engine Run 
Period 
(sec/Eon)

Fuel 
Consumption 
(l/100 Km)

DP Fuel 
Consumption 
(l/100 Km)

Fuel Economy 
(%)

Performance 
Robustness (%)

A3C Graz 20.54 494 3.470 3.402 98.00% 97.32 ± 0.78
75 6-UDDS 20.81 249 3.252 3.131 96.14%

4-HWFET 20.65 102 3.833 3.751 97.81%

Graz 20.54 222 6.155 5.964 96.80% 97.02 ± 0.66
50 6-UDDS 20.63 114 6.208 5.984 96.26%

4-HWFET 20.64 113 6.490 6.364 98.02%

Graz 20.53 106 8.904 8.612 96.61% 96.74 ± 1.13

25 6-UDDS 20.77 91 9.067 8.649 95.17%

4-HWFET 20.66 109 9.119 8.978 98.43%

PPO Graz 20.60 159 3.595 3.402 94.32% 94.66 ± 1.73

75 6-UDDS 20.75 90 3.368 3.131 92.42%

4-HWFET 20.86 39 3.854 3.751 97.26%

Graz 20.78 131 6.177 5.964 96.42% 95.19 ± 1.87

50 6-UDDS 20.77 64 6.440 5.984 92.38%

4-HWFET 21.15 35 6.580 6.374 96.77%

Graz 20.56 82 8.788 8.612 97.96% 97.09 ± 1.42
25 6-UDDS 20.74 57 9.085 8.649 94.96%

4-HWFET 20.64 48 9.127 8.978 98.34%

DQN Graz 20.50 114 3.602 3.402 94.11% 91.98 ± 2.39

75 6-UDDS 20.77 103 3.494 3.131 88.40%

4-HWFET 21.21 95 3.997 3.751 93.44%

Graz 20.57 139 6.141 5.964 97.03% 94.34 ± 3.53

50 6-UDDS 20.64 85 6.640 5.984 89.04%

4-HWFET 20.69 69 6.559 6.364 96.94%

Graz 20.51 79 8.879 8.612 96.90% 95.08 ± 3.09

25 6-UDDS 20.55 80 9.475 8.649 90.45%

4-HWFET 21.33 102 9.167 8.978 97.89%

CDCS Graz 20.54 139 3.825 3.402 87.57% 88.52 ± 3.78

75 6-UDDS 20.64 167 3.638 3.131 83.81%

4-HWFET 20.64 38 3.969 3.751 94.19%

Graz 20.54 62 6.414 5.964 92.45% 90.51 ± 3.75

50 6-UDDS 20.74 114 6.889 5.984 84.88%

4-HWFET 20.64 47 6.733 6.364 94.20%

Graz 20.54 67 8.702 8.612 98.95% 96.26 ± 2.27

25 6-UDDS 20.74 191 9.267 8.649 92.85%

4-HWFET 20.64 42 9.250 8.978 96.97%©
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